HTTP/1.1 200 OK Server: nginx Date: Thu, 12 Sep 2019 19:11:21 GMT Content-Type: text/html; charset=utf-8 Transfer-Encoding: chunked Connection: keep-alive Keep-Alive: timeout=20 Set-Cookie: PHPSESSID=efccvfg3r3qod9rktn87eujll1; path=/ Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache 大发彩票官网:初中数学知识点总结大全最新中考数学重点难点归纳2020-中非知识库cxqcyx.com

平安彩票

中非知识库

您身边的知识AI顾问

中非知识库> 学习相关> 初中学习> 初中数学> 初中数学综合知识> 初中数学知识点总结大全最新中考数学重点难点归纳2020
初中数学知识点总结大全最新中考数学重点难点归纳2020
2019年09月04日15:52
信息来源:网络

初中数学是一门中考必考的科目,很多同学都在学数学的这条路上吃了很多亏为了学好数学这门科目一定要勤加练习数学的题目,也要多多积累数学的知识点,小编整理了初中数学知识大全:


专题一  数与式

考点1.1、实数的概念及分类

1、 实数的分类

有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.2310.737373...,,.

无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多10)

实数:有理数和无理数统称为实数.                        

  2、无理数

  在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:

  (1)开方开不尽的数,如等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

  (3)有特定结构的数,如0.1010010001...等;

  (4)某些三角函数,如sin60o

注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似""形似"都不能作为判断的标准.

  3、非负数:正实数与零的统称。(表为:x≥0

常见的非负数有:

      

性质:若干个非负数的和为0,则每个非负担数均为0

  4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素"

任何一个有理数都可以用数轴上的一个点来表示。

 如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

   作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  5、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果ab互为相反数,则有a+b=0a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.

  6、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

☆(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.

注意:│a│≥0,符号"││""非负数"的标志;a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

  7、倒数

如果ab互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1-1。零没有倒数。

(1)实数(≠0)的倒数是.

 (2)和互为倒数。

 (3)注意0没有倒数.

  8、有效数字

  一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

  9、科学记数法

  把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

1)确定:是只有一位整数数位的数.

2)确定n:当原数≥1时,等于原数的整数位数减1;;当原数<1时,是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)。

例如:-40700=-4.07×1050.0000434.3×10ˉ5

3.近似值的精确度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位

4)按精确度或有效数字取近似值,一定要与科学计数法有机结合起来.

10、实数大小的比较

  知识1、数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  知识2、实数大小比较的几种常用方法

  (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  (2)求差比较:设ab是实数,

      

      

      

  (3)求商比较法:设ab是两正实数,

  (4)绝对值比较法:设ab是两负实数,则。

  (5)平方法:设ab是两负实数,则。

11、实数的运算    (做题的基础,分值相当大)

  1、加法交换律

  2、加法结合律

  3、乘法交换律

  4、乘法结合律

  5、乘法对加法的分配律

  6、实数的运算顺序

1. 先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

2. (同级运算)从""""(如5÷×5;(有括号时)""""""

12、有理数的运算:

加法:同号相加,取相同的符号,把绝对值相加。异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘得0乘积为1的两个有理数互为倒数。

除法:除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

考点1.2、实数与二次根式

  1、平方根

  如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

  一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

  正数a的平方根记做""

  2、算术平方根

  正数a的正的平方根叫做a的算术平方根,记作""

  正数和零的算术平方根都只有一个,零的算术平方根是零。

                  0

                  ;注意的双重非负性:

          -<0)                             0

注意:算术平方根与绝对值

联系:都是非负数,=│a│

区别:│a│中,a为一切实数;中,a为非负数。

3、算术平方根的估算方法:两端逼近法.

例如:估算.(精确到01)∵∴.又

∵6更靠近576  4、立方根

  如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

  一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:,这说明三次根号内的负号可以移到根号外面。

  二次根式

  5、二次根式

  式子叫做二次根式,二次根式必须满足:含有二次根号"";被开方数a必须是非负数。

  6、最简二次根式

  若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

  化二次根式为最简二次根式的方法和步骤:

  (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

  (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

  7、同类二次根式

  几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  8、二次根式的性质

  (1

  (2

  (3

4)     注:

  9、根式运算法则:

  加法法则(合并同类二次根式);

  乘、除法法则;

  分母有理化:A.;B.;C..

  10.指数

  ⑴                    (-幂,乘方运算)

① a0时,>0;②a0时,>0n是偶数),<0n是奇数)

零指数:=1a≠0

负整指数:=1/a≠0,p是正整数)

  11、二次根式混合运算

  二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

考点1.3、代数式与整式

  1、代数式

  用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。    注意:从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

  2、单项式

  只含有数字与字母的积的代数式叫做单项式。

  注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。

  注意:系数与指数:区别与联系:从位置上看;②从表示的意义上看

其含义有:

不含有加、减运算符号.

字母不出现在分母里.

单独的一个数或者字母也是单项式.

不含"符号".多项式  3、多项式

  几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  单项式和多项式统称整式。

  用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

  注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

       2)求代数式的值,有时求不出其字母的值,需要利用技巧,"整体"代入。

  4、同类项

  所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

    条件:字母相同;②相同字母的指数相同

    合并依据:乘法分配律

  5、去括号法则

  (1)括号前是"+",把括号和它前面的"+"号一起去掉,括号里各项都不变号。

  (2)括号前是"",把括号和它前面的""号一起去掉,括号里各项都变号。

  6、整式的运算法则

   整式的加减法:(1)去括号;(2)合并同类项。

   整式的乘法:             整式的除法:

   注意:(1)单项式乘单项式的结果仍然是单项式。

2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点1.4、整式的乘除  同上

考点1.5、因式分解

  1、因式分解

  把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  2、因式分解的常用方法

  (1)提公因式法:

  (2)运用公式法:

  扩展:

              ②                扩展:  或

同理:或

③(ab)(a2abb2)a3b3④(ab)(a2abb2)a3b3a2b2(ab)22ab(ab)2(ab)24ab

公式拓展:

     ⑦⑧     

     

     

  (3)分组分解法:

  (4)十字相乘法:

  3、因式分解的一般步骤:

  (1)如果多项式的各项有公因式,那么先提取公因式。

  (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式

  (3)分解因式必须分解到每一个因式都不能再分解为止。

考点1.6、分式

  1、分式的概念

  一般地,用AB表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。

  2、分式的性质

  (1)分式的基本性质:

  分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  基本性质:=m≠0

  (2)分式的变号法则:

  分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

  符号法则:

  3、分式的运算法则    技巧:    

4、繁分式:定义:分子或分母中又含有分式的分式,叫做繁分式.化简方法(两种)通常把繁分式写成分子除以分母的形式,再利用分式的除法法则进行化简.

专题二  方程与不等式

方程的分类

考点2.1  一元一次方程及可以化为一元一次方程的分式方程

一元一次方程的概念

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

    a=b←→a+c=b+c

  (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

    a=b←→ac=bc   (c≠0)

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

注意:解法

   一元一次方程的解法:去分母去括号移项合并同类项

系数化成1→解。验根

说明:对于以为未知数的最简方程,若没有给出字母ab的取值范围,其解有下面三种情况:

时一元一次方程,有唯一解.

,时,方程无解.

,时,方程有无数个解.

  分式方程

  5、分式方程

  分母里含有未知数的方程叫做分式方程。

  6、分式方程的一般方法

  解分式方程的思想是将"分式方程"转化为"整式方程"。它的一般解法是:

  (1)去分母,方程两边都乘以最简公分母

  (2)解所得的整式方程

  (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

  7、分式方程的特殊解法

  换元法:

  换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

注意.方程的增根与遗根

(1)在方程变形时,能产生不适合原方程的根叫做方程的增根.

(2)在方程变形时,由于盲目变形,在方程的两边同除以含有未知数的代数式,从而导致方程遗根.

  8、常用的相等关系

1. 行程问题(匀速运动)

  基本关系:s=vt

  相遇问题(同时出发):  +=;  追及问题(同时出发):    若甲出发t小时后,乙才出发,而后在B处追上甲,则    水中航行:;

配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

  .增长率问题:

  .工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

  .几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

  注意语言与解析式的互化

  如,"""""增加了""增加为(到)""同时""扩大为(到)"友情链接:大乐购彩票  澳彩网彩票官网  大乐购彩票  欢乐彩票  博乐彩票官网  大乐购彩票  永利彩票  澳彩网彩票官网